Image Image Image Image Image
Scroll to Top

To Top

admin

06

Apr
2020

No Comments

In Blog
Featured

By admin

BARDA, Department of Defense, and SAb Biotherapeutics to Partner to Develop a Novel COVID-19 Therapeutic

On 06, Apr 2020 | No Comments | In Blog, Featured | By admin


Published by Medical Counter Measures

A therapeutic to treat novel coronavirus disease 2019 (COVID-19) is moving forward in development through a partnership between BARDA, the Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO – CBRND), and SAb Biotherapeutics, Inc. (SAb), of Sioux Falls, South Dakota.

Using an interagency agreement with JPEO’s Medical CBRN Defense Consortium, BARDA transferred approximately $7.2 million in funding to (JPEO – CBRND) to support SAb to complete manufacturing and preclinical studies, with an option to conduct a Phase 1 clinical trial.

Read the full press release here.

30

Mar
2020

No Comments

In Blog
Featured

By admin

Agri-Pulse: Can cows be used to fight coronavirus?

On 30, Mar 2020 | No Comments | In Blog, Featured | By admin

Bovine plasma donors genetically engineered to produce human antibodies are in the front lines of the struggle against coronavirus.

SAB Biotherapeutics, a Sioux Falls, S.D., biotechnology company that has been successfully testing use of antibodies from cows to fight diseases such as another coronavirus, Middle East respiratory syndrome, now is engaged in developing a treatment for COVID-19, the disease caused by the novel coronavirus.

Read the full article here.

Times Argus: High-tech chestnuts: US to consider genetically altered tree

On 07, Nov 2019 | No Comments | In Blog, Featured, Future of Agriculture | By admin

SYRACUSE, N.Y. (AP) — Chestnuts harvested from high branches on a chilly fall morning look typical: they’re marble sized, russet colored and nestled in prickly burs. But many are like no other nuts in nature.

In a feat of genetic engineering, about half the chestnuts collected at this college experiment station feature a gene that provides resistance to blight that virtually wiped out the American chestnut tree generations ago.

Read more here. 

26

Jun
2019

No Comments

In Featured
Uncategorized

By admin

BDN: Local pesticide bans are a mistake

On 26, Jun 2019 | No Comments | In Featured, Uncategorized | By admin

For centuries, physicians have been controlling human diseases using all the tools available to them: proper nutrition of patients, sanitation, early disease diagnosis and intervention through medicines, including those derived from natural sources, chemicals and with more recent innovations, such as gene editing.

Likewise, farmers also control plant and animal diseases using the same approaches — proper plant and animal nutrition, sanitation, early disease diagnosis and intervention through natural, chemical and genetic sources.

Read more here. 

 

Farm to Food Gene Editing: The Future of Agriculture

On 25, Apr 2019 | No Comments | In Blog, Featured, Future of Agriculture | By admin

Curious about what gene editing is? Watch this video to learn how CRISPR is helping farmers grow better crops to feed our growing population.

USA Today: Earth Day for a dairy farmer: Thinking decades down the line

On 23, Apr 2019 | No Comments | In Blog, Featured, Future of Agriculture | By admin

April 22, 2019

What U.S. dairy farmers of today are doing to preserve our environment

I’ve had the honor of working with dairy farmers for years, and a lot of what you think about them is true. They’re modest. They’re connected to the earth. And they work incredibly hard. Every day, they’re up before dawn, working 12 and 14-hour days, whether it’s 90 degrees out or 50 degrees below zero.
 
They choose this hard work because they believe in the importance of providing nutritious, great-tasting food, like the milk in your child’s glass or the slice of cheese on her favorite sandwich.

What you might not know is that dairy farmers are working just as hard to ensure our children inherit a healthy planet. They know it’s the right thing to do. And when 95% of dairy farms are family-owned, they do it to ensure the land is there for their children. 

But the issues facing our planet require more than just individual action, which is why the U.S. dairy community has made sustainability an industry-wide priority. Years’ worth of investments, research — and, yes, hard work — have allowed us to address critical environmental issues, like climate change and greenhouse gas emissions. 

Dairy farmer and nutritionist Rosemarie Burgos-Zimbelman, who has dedicated her life to dairy nutrition.

Dairy farmer and nutritionist Rosemarie Burgos-Zimbelman, who has dedicated her life to dairy nutrition. (Photo: Innovation Center for U.S. Dairy)

This Earth Day, and every day, America’s dairy farmers are living up to that responsibility. May they never tire.

Vilsack is the former U.S. Secretary of Agriculture and the current president and CEO of the U.S. Dairy Export Council.

Click Here for More


Science makes bread taste better

On 27, Nov 2018 | No Comments | In Blog, Featured, Future of Agriculture | By admin

Renegade bakers and geneticists develop whole-wheat loaves you’ll want to eat

Boston Globe: 3 policies for the future

Food is going high-tech — policy needs to catch up with it

UConn Milking System Gives Cows Udder Control

On 03, Aug 2018 | No Comments | In Blog, Featured, Future of Agriculture | By admin

https://www.nbcconnecticut.com/on-air/as-seen-on/UConn-Milking-System-Gives-Cows-Udder-Control_Hartford-489924321.html

NBC CT: UConn Gene Editing Research Could Benefit Citrus Industry

On 20, Jun 2018 | No Comments | In Blog, Featured, Future of Agriculture | By admin

The Florida citrus industry is having their worst harvest in 73 years, and scientists at the University of Connecticut are stepping in to help.

The poor harvest is in part because of damage from Hurricane Irma, but the devastation started long before that. A disease known as citrus greening has been wreaking havoc for years. UConn researchers are working on a solution.

“Our hope is that we can modify endogenous genes in citrus to create the greening disease’s resistance,” explained University of Connecticut scientist Dr. Yi Li.

Gene editing is often discussed in terms of medical advancements and new health treatments. But gene editing can also benefit the food we eat and agriculture as well. Some of the latest developments are happening in Connecticut.

Florida citrus crops have been falling victim to the greening disease since 2005. The contagious disease is spread by a bacteria found in insects feeding off of citrus crops. The bacteria grows and spreads throughout the trees. But the process is slow – it can take up to five years after a tree is infected for it to show signs of damage. As of today, 75 percent of the Florida citrus crops have been wiped out by this quickly spreading disease that has also made its way to crops in Texas and California.

The UConn scientists are working in conjunction with the University of Florida to find a cure.

“We are basically the technology development lab,” Li said. “And then once we develop the technology people in Florida our collaborators are going to use our technology to genetically modify citrus genome.”

These small, targeted changes to an organism’s original genes produce a specific beneficial result. These genetic alterations can provide plants and animals with beneficial characteristics, just like the disease resistance seen in the citrus crops.

Helping the Florida citrus crop is only part of what’s being done here in the lab. Li and his team have also been implementing their gene editing technique on landscaping products that could soon be used in your own backyard. Their latest project? Slow growing grass.

“We started to breed them to develop these traits that we thought would be beneficial to lawn owners, homeowners, and commercial lawn care people,” explains PhD student Lorenzo Katin-Grazzini, “Such as slow growth to drastically reduce the mowing time that’s needed to really just save cost and time and energy associated with turf grass management.”

Li has also created a genetically modified burning bush, a plant often found in New England that spreads rapidly. Where it grows nothing else can, decreasing the diversity in our forests.

“They either don’t produce seeds or produce very few seeds as such that the birds cannot spread them anymore because there are no seeds,” Li said. “So we hope that those plants are going to be released through horticulture in the next two to three years.”

But the lab at UConn isn’t stopping there.

“I do want to work with more ornamental plants,” Li said. “Particularly invasive plants because I do think that has a huge impact on biodiversity on our environment so if we can use gene editing technology to make that non-invasive that’s what I would like to work on.”

https://www.nbcconnecticut.com/news/local/UConn-Gene-Editing-Research-Could-Benefit-Citrus-Industry-485967231.html